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CLIMATE-CORRECTED STORM-FREQUENCY EXAMPLES1 

Thomas E. Croley II 

ABSTRACT.  Storm frequency estimates (e.g., maximum precipitation or flow probabili-
ties) allow engineers and hydrologists to assess risks associated with their decisions during 
the design, construction, and operation of water resource projects.  Storm frequencies for 
the future are often estimated directly from past historical records of sufficient length.  The 
estimation requires no detailed knowledge of the area�s meteorology, but presumes it re-
mains unchanged in the future.  However, the climate seldom remains static.  Numerous 
climate forecasts of meteorology probabilities over extended periods are now available to 
the water resource engineer and hydrologist.  It is possible to use these meteorology fore-
casts directly in the estimation of storm frequencies from the historical record.  It is more 
desirable to do so now than at any time past, since meteorology forecasts have been improv-
ing and are now better than their predecessors.  A heuristic approach is defined here to es-
timate storm frequencies that recognize forecasts of extended weather probabilities.  Basi-
cally, those groups of historical meteorology record segments matching forecast meteorol-
ogy probabilities are weighted more than others, during the estimation of storm frequencies.  
(Affiliated groups of hydrology record segments may be similarly weighted for hydrological 
estimation; e.g., flood frequency estimation.)  Examples include frequency estimation of 
maximum daily precipitation and maximum flow, using currently available agency mete-
orological forecasts in the US and Canada as well as El Niño and La Niña conditional prob-
abilities. 

1.  INTRODUCTION 

The purpose of this report is to present application examples for modifying storm frequency es-
timates to reflect outside probability information that might be available, such as meteorology 
probability forecasts or El Niño�Southern Oscillation (El Niño and La Niña) expectations.  The 
report consists of a brief overview of storm frequency estimation and a brief discussion of the 
application of techniques to alter this estimation for meteorology probability forecasts.  Details of 
the theory and discussion of the techniques presented here are available elsewhere (Croley 1996, 
1997a,b, 2000a,b).  This report details the application examples omitted in the theoretical de-
scription presented by Croley (2000b). 

2.  STORM FREQUENCY ESTIMATION 

Since storm frequencies are unknown, they are estimated from the historical record, which is as-
sumed ergodic and treated as a �random sample.�  Successive observations are considered identi-
cally distributed and equally likely to occur (both in the past and future).  Likewise, the observa-
tions must be defined so they can be considered as independent of each other.  (Two successive 
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storms occurring very closely may result in a high degree of dependence of the second on the 
first.)  Defining long event inter-arrival times or record pieces can minimize temporal depend-
ence.  For example, annual maximum floods or rainfalls (inter-arrival time on the order of a year) 
are often taken as time independent, as are 1-year record segments. 

Storm frequencies or �exceedance probabilities,� [ ]P X x�  can be estimated directly from the 
historical record.  Suppose all values, ix , in a random sample of annual maximums ( ix , 1i � , ..., 
n ) are ordered from largest to smallest to define the ordered variable values ( y

�
, 1�� , ..., n ), 

where ( )iy x�
� �

 and ( )i �  is the number of the value in the unordered sample corresponding to the 
�

th order.  There are several methods to estimate exceedance probabilities from annual ex-
ceedance series (Chow 1964); without loss of generality, the popular �Weibull� method is used 
here as an example: 

 � �
1

1� 1 , 1, ,
1 1 i

P X y n
n n

�

� � � �

� �
�
�

�

�
� �  (1) 

The caret, �^,� denotes an estimate of the characteristic named underneath.  Other methods also 
could be used. 

This estimator is called �non-parametric� since knowledge of the underlying distribution and its 
parameters is not required.  Other estimators (called �parametric�) derive from knowledge (or 
supposition) of the type of underlying distribution.  Functions of a random sample may be used 
as estimators of the parameters of the underlying distribution.  Several of interest here are the 
�sample mean,� �� , �sample variance,� 2�� , and �sample skew coefficient,� �� : 
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They are estimators of distribution mean, � , variance, 2
� , and skew coefficient, � , respectively.  

Other estimators (Koutrouvelis and Canavos 1999) also could be used with no loss of generality. 

3.  EXAMPLE STORM FREQUENCIES 

Daily precipitation data from 32 stations were assembled over 1948-1995 for the Maumee River 
basin, defined at its outflow point into Lake Erie with an area of 16,806 km2.  (Widespread mete-
orological observations began in 1948.)  The annual maximum of the areal-average (Thiessen-
weighted) daily basin precipitation for this data set is given in columns 2 and 6 of Table 1.  Addi-
tionally, daily flow records of the Maumee River at Waterville, Ohio (basin area = 16,394.7 km2) 
were searched for this period, and the annual maximum daily flows are given also in Table 1.  



 
7 

Table 1.  Annual Daily Maxima for the Maumee River Basin (35.31 cfs = 1 m3s-1). 
Year Calendar 

Year 
Water 
Yearc 

 Year Calendar 
Year 

Water 
Yearc 

 Precip.a 
(mm) 

Flowb 
(cfs) 

Flowb 
(cfs) 

  Precip.a
(mm) 

Flowb 
(cfs) 

Flowb 
(cfs) 

(1) (2) (3) (4)  (5) (6) (7) (8) 
1949 3.674 45100 45100 1973 2.490 40000 42800 
1950 4.984 92400 92400 1974 2.295 69600 69600 
1951 3.412 53100 53100 1975 2.690 49400 49400 
1952 3.931 53100 53100 1976 2.532 68500 68500 
1953 3.010 33200 33200 1977 4.151 64000 56200 
1954 3.753 23400 23400 1978 2.518 86400 86400 
1955 3.563 45900 45900 1979 3.185 53400 53400 
1956 4.232 42700 42700 1980 4.511 44400 44400 
1957 4.661 62400 62400 1981 4.930 85400 85400 
1958 3.276 29700 40300 1982 3.776 113000 113000 
1959 4.274 80000 80000 1983 3.510 54200 54200 
1960 2.594 44800 44800 1984 2.420 51300 51300 
1961 2.614 53500 53500 1985 2.545 91100 91100 
1962 2.335 45800 45800 1986 4.018 36200 36000 
1963 2.795 35200 35200 1987 3.206 23500 36200 
1964 2.533 46800 46800 1988 3.779 22900 23500 
1965 3.259 36200 36200 1989 3.370 42700 42700 
1966 3.561 79000 26200 1990 4.164 82000 62500 
1967 2.592 48900 79000 1991 4.187 86700 86700 
1968 3.537 56900 56900 1992 3.625 54000 36700 
1969 4.511 67500 67500 1993 2.359 65000 65000 
1970 3.580 33300 33300 1994 2.685 63900 63900 
1971 3.785 38900 38900 1995 2.918 51000 51000 
1972 5.575 46900 46900    

aAreal-average daily precipitation for Maumee River basin at Lake Erie, Ohio. 
bMaumee River at Waterville, Ohio, Lat. 41:30:00, Long. 83:42:46. 
c�Water Year� is defined by its end (e.g., water year 1949 ends 30 September 1949). 

Both the calendar year of 1 January�31 December (columns 3 and 7) and the water year of 1 
October�30 September (columns 4 and 8) were used to define the annual maximum daily flow.  
The exceedance frequencies for the annual maximum flows were estimated with (1) and plotted 
in Figures 1 and 2 as �non-parametric sans forecast.� 

The log-Pearson Type III distribution also was fit to the data sets of Table 1.  This distribution 
results from supposing the natural logarithms of the data in Table 1 [Z  =  ln(X)] are distributed 
as a three-parameter gamma distribution: 

 � �
� �

� � � �
1

1 , 0 0
z c

Z
z c

f z e c z z c
�

� � �
� � �

�
�

��� �
� � � � � �� � � �	 
� � 

 (5) 
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Figure 1. Annual Maximum (Calendar Year) Daily Maumee River Flow Exceedance Fre-

quency, made in September 1999 for September 1999�August 2000 (35.31 cfs = 
1 m3s-1). 
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Figure 2. Annual Maximum (Water Year) Daily Maumee River Flow Exceedance Fre-

quency, made in September 1999 for September 1999�August 2000 (35.31 cfs = 
1 m3s-1). 
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where � �( )Zf z P Z z
z
�

� �
�

, ( )��  is the gamma function, and , , and c� �  are distribution parame-

ters.  Parameter estimates are given in terms of (2)�(4) defined on the natural logarithms of the 
data (USWRC 1967) by replacing expected values from (5) with sample moments: 

 � �
2�� 2� ��  (6) 

 2� �� 2� � ��  (7) 

 2 �� � �2c � � �� �  (8) 

The estimated log-Pearson Type III distributions are shown also in Figures 1 and 2 as �paramet-
ric sans forecast.�  See Koutrouvelis and Canavos (1999) for other parameter estimators. 

4.  MATCHING PROBABILITY FORECASTS 

The probability of any event � , [ ]P � , can be inferred with the estimator, �[ ]P � , defined as the 
number of observations in the random sample for which �  occurs (i.e., for which the event �  is 
true), n

�
, divided by the total number of observations in the sample, n : 

 � �
1� 1

i

n
P

n n
�

�

� � � �  (9) 

In (9), the sum is taken over all i (members of the random sample) for which �  occurs, denoted 
as i � .  The estimate in (9) is seen as the �relative frequency� of �  in the random sample.  
Croley (1996, 1997a,b, 2000a,b) biased samples, by multiplying observations by non-negative 
weights, iw , to calculate probabilities matching others� multiple probability forecasts: 

 � �
1�

i
i

P w
n

�

� � �  (10) 

 
1

n

i
i

w n
�

��  (11) 

Consider, for example, that others� forecasts of event probability can be interpreted in 1m �  prob-
ability equations (Croley 1996) and forecasts of most-probable events can be interpreted in u  
probability inequalities (Croley 2000a).  They are expressed in terms of relative frequencies over 
a random sample as follows: 

 � �

� �

� , 2, ,
� , 1, ,

k k

k k

P a k m

P a k m m u

� � �

� � � � �

�

�

 (12) 

where ka  are the forecast probabilities.  Equation (10), when applied to match the forecasts of 
meteorology probabilities in (12) and added to (11), yield a system of equations to be solved for 
the weights: 
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Equivalently, 
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, 1, ,
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n

k i i k
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w e k m m u
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 (14) 

where ,k i�  = 1 for k = 1 or for k > 1 and ki �  [inclusion of the ith random sample value (ith event 
or segment of the historical record) in the event of the kth probability statement]; otherwise it is 
zero.  Also, ek = n for k = 1 and ek = kn a  for k > 1.  Any weights that satisfy (14) yield weighted-
sample relative frequencies of events that match forecasts of meteorology probabilities.  These 
weights also yield other corresponding biased sample estimators; e.g., (1)�(4) become: 

 � � � �
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1� , 1, ,
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�  (18) 

Generally, some of the equations in (13) or (14) may be either redundant or infeasible (non-
intersecting with the rest, resulting in no solutions) and must be eliminated.  (If the number of 
equations is greater than the number of weights, then some of the equations must be either redun-
dant or infeasible.)  In practice, one could assign each equation in (13) or (14) a �priority� reflect-
ing its importance.  [The highest priority is given to the first equation in (13) or (14) correspond-
ing to (11), guaranteeing that all relative-frequencies sum to unity.]  Each equation (starting with 
the second highest priority equation) is compared to the set of all higher-priority equations and 
eliminated if redundant or infeasible.  Thus (14) can always be reduced so that the allowed num-
ber of forecasts of meteorology probabilities is less than or equal to the number of historical re-
cord pieces (sample size).  If less, then there are multiple solutions to (14), and a choice must be 
made as to which solution to use. 



 
11 

5.  OPTIMUM SOLUTION 

If there are multiple solutions to (14), the identification of the �best� requires a measure or 
objective function for comparing them.  Solutions of (14) with larger values of this measure can 
be judged �better� than those with smaller values.  One such measure is the probability of a se-
lected event.  If the objective function is always a statement of maximizing or minimizing a 
probability, then it can be added to the problem statement of (14) to yield an optimization prob-
lem.  Objective functions that use probability statements can be expressed in the general form: 

 0,
1

max 
n

i i
i

w�

�

�  (19) 

where 0, i�  are defined similarly to (14) in which the objective function is equation 0.  The prob-
lem of solving (14) can now be formulated as an optimization, maximizing the objective function 
subject to a �constraint set� of equations: 

 

0,
1

,
1

,
1

max subject to

, 1, ,

, 1, ,

0, 1, ,

n

i i
i
n

k i i k
i
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k i i k
i

i

w

w e k m

w e k m m u

w i n

�

�

�

�

�

�

� �

� � � �

� �

�

�

�

�

�

�

 (20) 

Equations (20) are amenable to standard �linear programming� optimization techniques.  An al-
gebraic procedure, termed the �Simplex� method, has been developed (Hillier and Lieberman 
1969) which progressively approaches the optimum solution through a well-defined iterative 
process until optimality is finally reached.  Croley (2000a,b) describes a procedure for applying 
the Simplex method in a two-stage optimization.  The first stage finds a feasible solution to the 
constraint set in (20) and the second searches systematically from that feasible solution to the op-
timum solution.  Multiple optima are possible, depending upon the objective function and the 
constraint set. 

6.  NOAA AND EC FORECAST EXAMPLE 

The estimates of Figure 1 are modified by incorporating selected forecasts from the National 
Oceanic and Atmospheric Administration (NOAA event probability forecasts) and Environment 
Canada (EC most-probable event forecasts); see Croley (1996, 1997b, 2000a).  An example for 
NOAA is given in Figure 3.  The NOAA outlook estimates probabilities of average air tempera-
ture and total precipitation falling within pre-selected value ranges.  The value ranges (low, nor-
mal, and high) are defined as the lower, middle, and upper thirds of observations over period 
1961�90 for each variable.  The climate outlooks presume that one of only four possibilities ex-
ists for the probability distribution type for each variable: 1) the probability of being in the high 
range exceeds one-third, and the probability of being in the low range is reduced accordingly (it 
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Figure 3. NOAA Outlook of Meteorology Event Probabilities for October-November-
December 1999, made 16 September 1999. 

remains at one-third for the normal range)�referred to as being �above normal�; 2) the probabil-
ity of being in the normal range exceeds one-third, and the probabilities of being in the low and 
high ranges are reduced accordingly and are equal�referred to as being �normal�; 3) the prob-
ability of being in the low range exceeds one-third, and the probability of being in the high range 
is reduced accordingly (it remains at one-third for the normal range)�referred to as being �below 
normal�; or 4) skill is insufficient to make a forecast, and so probabilities of one-third in each 
range are used�referred to �climatological.�  From Figure 3 at the Maumee River basin (near 
the southwest edge of Lake Erie, marked by a red asterisk), the probability of October-
November-December (OND) total precipitation in the upper third of historical observations is 
forecast to rise by about 0.05.  According to the convention of NOAA�s definitions then, the cor-
responding probability of OND precipitation in the lower third of historical observations is fore-
cast to drop by about 0.05, and the probability of OND precipitation in the middle third of his-
torical observations is forecast to remain unchanged at one-third: 

 
99 ,0.333

,0.333 99 ,0.667

99 ,0.667

�� 0.333 0.05 0.283

� �� 0.334

�� 0.333 0.05 0.383

OND OND

OND OND OND

OND OND

P Q

P Q

P Q

�

� �

�

� �� � � �� �

� �� � �� �

� �	 � 
 �� �

 (21) 



 
13 

 

Figure 4. EC Outlook of Most-Probable Meteorology Event for September-October-
November 1999, made 1 September 1999. 

where gQ  = total precipitation for period g  and ,
�
g �

�  is the � -quantile for period g  precipitation 
estimated from a reference historical period (1961�90) such that: 

 ,
��

g gP Q
�

� �� �� �� �  (22) 

Likewise, air temperature, gT , and its quantiles, ,�g �
� , are defined similarly to (22).  Noting that 

the second line of (21) is redundant with the rest of (21) and the fact that all probabilities must 
sum to unity, we need only keep the top and bottom lines in (21). 

An example for EC is given in Figure 4.  The EC outlook indicates which of three pre-selected 
ranges of values (lower, middle, or upper thirds of observations from 1961�90 for precipitation 
or from 1963�93 for temperature) are most likely to occur for 1- and 3-month air temperature 
and 1- and 3-month total precipitation.  Figure 4 at the Maumee River basin (marked with a red 
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� � 0.333JJA JJAP T �� �� 	� �  (37) 

 '99 , 0.667
� � 0.393DJF DJFP T �� �� �� �  (18)  , 0.333 '00 , 0.667

� � � 0.334JJA JJA JJAP T� �� �� � �� �  (38) 

 '00 , 0.333
� � 0.263JFM JFMP T �� �� �� �  (19)  '00 , 0.667

� � 0.333JJA JJAP T �� �� �� �  (39) 

 '00 , 0.667
� � 0.403JFM JFMP T �� �� �� �  (20)  

Figure 5. Mixed NOAA and EC Meteorology Probability Forecasts Made in September 
1999 over the Maumee River Basin. 

asterisk) shows that above-normal air temperatures are expected for the September-October-
November period, which is interpreted as follows: 
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 (23) 

All 28 NOAA forecast maps, like Figure 3, which were published in September 1999, were se-
lectively read and interpreted as in (21) and the results are summarized in Figure 5 as equations 1 
through 24.  All eight EC forecast maps, like Figure 4, which were available in September 1999, 
were also selectively read and interpreted as in (23) and the results are summarized in Figure 5 as 
equations 25 through 39.  The forecasts summarized in Figure 5 are in priority order with the ear-
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liest-made forecasts first (NOAA equalities precede EC inequalities), precipitation before tem-
perature second, and chronologically third. 

Note that the precipitation forecasts in Figure 5 are for high precipitation with only one exception 
(the EC SON forecast).  The objective in matching these forecasts is therefore (arbitrarily) taken 
as maximizing the probability that precipitation over the period November 1999�July 2000 will 
be in the upper third of its historical range (determined from 1961�1990): 

 '99 '00 , 0.667
��max Nov Jul Nov JulP Q �

� �

� ��� �  (24) 

Daily precipitation and air temperature data from 32 stations were assembled over 1948-1995 for 
the Maumee River basin.  (Widespread meteorology observations began in 1948.)  The data were 
used to determine the Thiessen-averaged air temperature and the total precipitation, for the peri-
ods shown in Figure 5 and (24), which are given in Tables 2 and 3.  According to the agencies, 
the NOAA temperature and precipitation forecasts and the EC precipitation forecasts are defined 
relative to historical reference quantiles estimated over the 1961-1990 period.  Likewise, the EC 
temperature forecasts are defined relative to historical reference quantiles estimated over the 
1963-1993 period.  By ordering data from these periods, the reference quantiles are estimated in 
Tables 4 and 5. 

Consider the objective function of (24) and the forecasts of Figure 5 to apply prior to and through 
the beginning of each year in the sample, so that the time lag accounts for meteorology driving 
hydrology.  (The Maumee River annual maximum flow typically occurs as spring snowmelt.)  In 
other words, each year of record is to be weighted to reflect the objective of (24) and the begin-
ning winter as forecast in Figure 2 (a total period from September of the year before through the 
following August).  For example, the first value in Table 1 for calendar year 1949 corresponds to 
the objective and forecast values for September 1948�August 1949.  The coefficients in (20) are 
derived from the data set, Figure 2, and (24); see Croley (2000a).  In the ensuing optimization, 19 
weights are zeroes, indicating that some of the historical record is not used.  However, all but the 
last three equations in Figure 2 are used (corresponding to all forecasts except the EC most-
probable JJA air temperature forecast). 

Suppose now that a hydrologist has acquired, in September 1999, the forecasts of Figure 5 and 
wishes to make an estimate of storm frequencies (annual maximum Maumee River flows) at that 
time for the coming winter and following spring and summer (September 1999�August 2000).  
He or she would consider each of the possibilities in Table 1 as a possibility for this period.  (The 
Maumee River annual maximum flow typically occurs as spring snowmelt.)  The objective func-
tion of (24) and the forecasts of Figure 5 would apply prior and through the beginning of each 
year in the sample, so that the time lag accounts for the meteorology driving the hydrology.  In 
other words, each year of record is to be weighted to reflect the objective of (24) and the begin-
ning winter as forecast in Figure 5 (a total period from September of the year before through the 
following August).  For example, the first value in Table 1 for calendar year 1949 corresponds to 
the objective and forecast values for September 1948�August 1949.  The coefficients in (20), 

,k i� , have values of 1 or 0 corresponding to the inclusion or exclusion, respectively, of each 
variable in the sets indicated in the variable subscripts in (24) and Figure 5.  For (24), the reader 
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Table 2.  Average Air Temperature over the Maumee River Basin (ºC). 
 Start in Year Start in Following Year 

Year SON OND NDJ Nov-Apr DJF JFM FMA MAM JJA 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1948 12.28 5.93 2.76 3.69 0.40 1.66 4.64 9.95 23.21 
1949 11.35 6.63 2.30 1.99 0.09 0.10 1.67 7.82 20.70 
1950 11.04 3.55 -1.74 0.80 -3.06 -0.26 3.39 9.47 21.17 
1951 10.49 4.12 -0.54 1.82 -0.94 0.67 4.23 9.03 23.24 
1952 10.99 5.26 2.08 3.22 0.27 1.60 4.38 9.87 23.12 
1953 12.69 6.81 1.61 3.64 0.26 0.73 5.72 9.33 22.08 
1954 12.22 5.47 0.13 2.67 -1.85 -0.36 5.27 11.21 23.02 
1955 11.50 4.18 -1.38 0.75 -2.80 -1.16 2.93 8.38 21.88 
1956 12.08 7.17 0.20 2.41 -1.34 -0.88 4.67 9.61 21.89 
1957 10.82 5.42 1.00 1.78 -2.20 -1.94 2.58 9.28 20.57 
1958 12.01 4.10 -1.90 0.81 -4.52 -1.59 3.59 10.35 23.02 
1959 11.21 5.15 0.75 1.23 -0.81 -2.59 1.73 7.30 21.17 
1960 12.50 4.42 -1.35 1.40 -3.11 0.09 4.21 8.53 21.29 
1961 12.72 5.02 -1.11 0.80 -3.96 -2.41 2.76 10.30 21.49 
1962 11.20 4.18 -2.96 -0.22 -6.56 -3.49 2.58 9.55 21.07 
1963 13.40 5.50 -0.44 1.45 -3.69 -0.58 3.39 10.22 21.84 
1964 11.46 4.82 0.33 1.00 -2.77 -2.50 1.69 8.88 20.58 
1965 11.76 6.22 0.57 1.99 -1.89 -1.20 3.45 8.16 21.97 
1966 10.39 4.40 0.64 1.84 -2.63 -0.91 3.08 8.74 20.88 
1967 9.77 4.51 -1.22 1.14 -3.31 -1.89 3.55 9.38 21.94 
1968 11.74 4.97 -0.70 1.26 -3.11 -2.00 3.26 9.25 21.26 
1969 10.50 3.63 -2.98 -0.15 -4.94 -3.64 2.73 9.46 21.74 
1970 12.10 5.49 -0.97 0.72 -3.20 -2.60 2.45 7.97 21.65 
1971 13.25 7.41 0.69 1.42 -1.96 -2.09 2.17 8.81 20.58 
1972 10.09 3.75 0.09 2.46 -1.81 1.08 4.89 10.14 22.40 
1973 13.01 5.95 0.26 1.95 -2.85 -0.89 3.68 9.42 21.40 
1974 10.40 4.70 0.74 1.30 -1.67 -0.74 1.87 8.52 21.96 
1975 11.53 6.21 0.17 2.98 -1.98 0.29 5.85 10.03 21.08 
1976 8.22 0.94 -5.94 -0.52 -7.41 -3.35 5.02 12.58 21.39 
1977 11.19 3.77 -2.40 -1.65 -7.55 -6.56 -0.90 7.74 21.31 
1978 11.82 4.78 -1.26 0.02 -5.88 -4.05 1.32 9.24 20.96 
1979 11.22 5.48 0.47 0.76 -3.10 -3.04 1.05 8.27 22.06 
1980 10.47 3.50 -1.96 1.07 -3.65 -1.76 4.17 9.22 21.64 
1981 10.34 3.91 -2.20 -0.58 -5.68 -4.16 1.08 9.31 20.75 
1982 11.73 7.16 2.33 3.24 0.51 0.84 4.18 8.52 23.24 
1983 12.12 3.69 -2.96 -0.27 -4.64 -3.06 2.47 6.53 22.05 
1984 11.66 6.72 -0.14 2.22 -3.05 -2.04 4.63 11.79 20.71 
1985 12.50 4.45 -0.89 1.61 -4.19 -0.62 4.16 10.75 21.25 
1986 11.57 5.04 -0.28 2.33 -1.46 0.21 5.00 11.13 22.74 
1987 11.06 5.19 0.78 1.68 -2.88 -2.11 2.60 9.73 23.51 
1988 10.21 3.71 1.16 1.75 -1.94 -0.26 2.36 8.47 21.53 
1989 10.50 2.11 -1.35 1.82 -2.48 2.27 5.05 9.52 21.07 
1990 12.00 6.13 1.04 3.15 -1.33 0.08 5.30 11.90 22.73 
1991 10.96 5.35 0.30 2.09 -0.48 0.36 3.92 8.62 19.72 
1992 10.55 4.80 0.75 1.22 -2.29 -1.83 1.71 8.49 22.16 
1993 10.06 4.22 -2.00 0.37 -4.98 -3.49 2.80 9.14 21.40 
1994 12.35 6.84 1.67 2.30 -1.83 -0.77 2.95 9.06 23.31 
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Table 3.  Average Daily Precipitation on the Maumee River Basin (mm). 
 Start in Year Start in Following Year 

Year SON OND NDJ Nov-July DJF JFM FMA MAM JJA 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1948 2.56 2.52 3.19 2.88 2.74 2.53 2.04 2.52 3.02 
1949 2.03 2.03 3.27 3.24 4.42 4.47 3.65 2.59 3.80 
1950 3.66 2.87 2.40 2.91 2.04 2.31 2.89 3.00 2.95 
1951 2.33 2.86 3.03 2.82 2.79 2.71 2.68 3.46 1.98 
1952 1.71 1.49 1.91 2.15 1.62 2.13 2.13 2.61 2.17 
1953 1.02 0.96 1.40 2.29 1.97 2.42 2.72 2.67 3.37 
1954 2.81 2.90 1.58 2.15 1.72 2.20 2.47 2.31 2.76 
1955 3.02 2.61 1.64 2.49 1.23 2.03 2.64 3.33 2.81 
1956 0.81 1.31 1.71 2.60 1.70 1.39 2.66 3.32 2.76 
1957 2.79 2.84 2.11 2.53 1.71 0.78 1.15 1.68 4.62 
1958 2.38 1.50 2.30 2.67 2.12 2.86 3.06 3.05 2.48 
1959 2.99 2.74 2.40 2.34 2.24 1.77 1.51 1.85 2.64 
1960 1.24 1.10 0.75 2.39 1.17 2.19 3.73 3.44 2.91 
1961 2.27 1.58 1.97 1.98 1.84 1.95 1.45 1.79 2.27 
1962 1.71 1.25 0.89 1.88 0.72 1.62 2.11 2.53 2.45 
1963 0.87 0.86 1.27 2.24 0.98 2.03 3.15 3.46 2.27 
1964 1.01 1.06 1.98 2.30 2.43 2.58 2.62 2.63 2.60 
1965 2.67 2.42 1.57 2.00 1.49 1.13 1.72 2.08 2.86 
1966 2.49 3.14 3.21 2.62 2.26 1.69 2.19 2.68 1.93 
1967 2.52 3.38 2.91 2.81 2.48 1.49 1.67 2.97 3.05 
1968 2.17 2.33 3.06 2.77 2.12 1.57 1.62 2.62 2.75 
1969 2.99 2.01 1.58 2.49 0.91 1.25 2.40 3.23 2.59 
1970 2.54 1.85 1.44 2.11 1.59 1.57 1.58 1.99 2.41 
1971 2.16 2.13 1.91 2.48 1.71 1.36 2.49 3.30 2.80 
1972 3.95 2.67 2.46 2.94 1.52 2.09 2.40 3.18 3.61 
1973 1.94 2.58 2.74 2.43 2.37 2.41 2.35 2.96 1.94 
1974 1.85 1.96 2.47 2.63 2.34 2.11 2.16 2.50 4.03 
1975 2.08 2.10 2.18 2.51 2.32 2.53 2.55 2.48 2.47 
1976 1.61 1.02 0.61 1.98 1.04 2.03 3.03 2.82 3.35 
1977 2.49 2.28 2.67 2.37 2.21 1.83 2.13 2.72 2.41 
1978 1.75 1.98 2.16 2.45 1.86 1.70 2.03 2.58 3.69 
1979 2.06 2.46 2.16 2.71 1.38 1.80 2.41 2.83 4.05 
1980 1.43 1.34 1.02 2.56 1.43 1.03 2.30 2.71 4.01 
1981 2.74 2.04 2.11 2.46 2.32 2.73 2.29 2.89 2.28 
1982 2.57 2.84 2.84 2.65 1.36 1.10 2.26 3.05 2.24 
1983 3.41 3.81 2.77 2.62 1.65 1.45 2.60 3.45 1.90 
1984 2.62 2.31 2.12 2.38 2.13 2.62 2.57 2.45 2.95 
1985 3.34 3.17 2.44 3.00 1.53 1.64 2.38 2.35 4.35 
1986 2.96 2.09 1.51 1.92 1.10 1.02 1.00 1.91 3.39 
1987 1.76 2.27 1.98 1.71 1.81 1.39 1.68 1.43 2.21 
1988 2.84 2.64 2.30 2.65 1.43 1.42 1.88 3.14 3.15 
1989 2.14 1.50 1.48 2.81 2.36 2.64 2.76 2.76 3.91 
1990 2.62 3.53 2.88 2.41 2.56 1.32 1.98 2.93 2.04 
1991 2.69 2.55 1.52 2.51 1.19 1.63 2.24 2.68 3.80 
1992 3.71 2.71 3.12 2.88 2.15 2.41 2.37 2.45 3.06 
1993 2.75 1.85 2.01 2.10 1.35 1.32 2.04 2.02 2.78 
1994 1.51 1.89 2.36 2.39 1.69 1.51 2.03 2.80 2.77 
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Table 4. Historical Reference Quantiles of Average Air Temperature over the Maumee River 
Basin (ºC). 

Quantile Period, i 
 SONa SONb ONDa NDJa Nov-Apra DJFa DJFb JFMa FMAa MAMa JJAb 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

, 0.333�i�  10.50 10.50 4.18 -1.22 0.80 -3.69 -3.54 -2.5 2.47 8.45 21.15 

, 0.667�i�  11.74 11.71 5.19 0.26 1.75 -2.63 -2.35 -0.89 3.68 9.31 21.84 
aQuantiles based on the period: 1961-1990. 
bQuantiles based on the period: 1963-1993. 

 
Table 5. Historical Reference Quantilesa of Average Daily Precipitation 

on the Maumee River Basin (mm). 
Quantile Period, i 

 SON OND NDJ DJF JFM FMA MAM JJA Nov-July 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

, 0.333
�
i�  2.06 1.98 1.91 1.49 1.49 2.11 2.49 2.45 2.37 

, 0.667
�
i�  2.57 2.42 2.44 2.13 2.03 2.40 2.83 3.01 2.62 

aQuantiles based on the period: 1961-1990. 
 
can see from inspection of column 5 in Table 3 that the relation, , 0.667

�
Nov Jul Nov Julq �

� �

�  (or 
2.62 mmNov Julq

�

� ; see column 10 in Table 5) is satisfied by the following indices: 1 (corre-
sponding to 1948), 2, 3, 4, 11, 19, 20, 21, 25, 27, 32, 35, 38, 41, 42, and 45 (corresponding to 
1992).  [Index 19 (corresponding to 1966) does not appear to satisfy this relation because of 
round-off error, but in fact does.]  Thus, (24) would be written, similar to the first line in (20), as 

 max (w1+w2+w3+w4+w11+w19+w20+w21+w25+w27+w32+w35+w38+w41+w42+w45) (25) 

Expressing (25) in vector form, 

 � �max 11110000001000000011100010100001001001001100100 w  (26) 

where w = the column vector of the weights.  Likewise, the reader can see from inspection of Ta-
bles 2�5 that (24), (11), and Figure 5 become, similar to (20) [with (11) first in the constraint 
set], the vector equation set shown in Figure 6.  In the ensuing optimization of Figure 6, 19 
weights are zeroes, indicating that some of the historical record is not used.  However, all but the 
last three equations in Figures 5 and 6 are used (corresponding to all forecasts except the EC 
most-probable JJA air temperature forecast). 

Climate-biased storm frequencies for the annual (calendar year) maximum daily flow can now be 
estimated by applying these weights to the data in column 3 of Table 1 by using (15)�(18).  
Only results for the fitted Log-Pearson Type III distribution (to simplify the presentation) are 
given in Figure 1.  Compare the Log-Pearson Type III distribution derived from the parametric 
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max [11110000001000000011100010100001001001001100100] w  subject to 
 
[11111111111111111111111111111111111111111111111] w  =  47 
[00001100101011111000001000101010100000000100011] w  =  0.283 � 47 
[10110011010100000011000011000001001101001011100] w  =  0.383 � 47 
[00000111100010110100011100001000100000100101000] w  =  0.273 � 47 
[11010000000000000011100011100100001100000010100] w  =  0.393 � 47 
[00000001000010110100010000001001101000101001010] w  =  0.273 � 47 
[11010000000100001011000001110100010000000110100] w  =  0.393 � 47 
[00000000110000000101010100000000101100111010010] w  =  0.133 � 47 
[11111111001010001000000011111000010010000100100] w  =  0.533 � 47 
[10000000010101100101101000000010000000111010011] w  =  0.273 � 47 
[01110111101010011000000100011001000110000100000] w  =  0.393 � 47 
[00000010010101000100001000010000000011110000110] w  =  0.273 � 47 
[00110001101010010001010111000000011100001010000] w  =  0.393 � 47 
[00110001001000100000010010001100110100001100000] w  =  0.333 � 47 
[11001110110000010100001101010001001010000011001] w  =  0.333 � 47 
[00100001001010100001010000001110110100000100010] w  =  0.333 � 47 
[11001100010100001110000100100001001000011011101] w  =  0.333 � 47 
[00000000001001110000010000001110010101000000010] w  =  0.273 � 47 
[11011110110100000100000110110000001000101111101] w  =  0.393 � 47 
[00000000000100101000011000001111010100000000010] w  =  0.263 � 47 
[11111110100010010000000010110000001001101111001] w  =  0.403 � 47 
[01000000000100001000001100100111010100001000100] w  =  0.333 � 47 
[10011110100010000000000010011000101011100111000] w  =  0.333 � 47 
[01000001000100000100001000000101000100000000000] w  =  0.333 � 47 
[10101110101001110001010011011000010011110110000] w  =  0.333 � 47 
[01001100100010111000000001101011100000010000001] w  <  0.333 � 47 
[01101111110110111100010011101011110111111011111] w  <  0.666 � 47 
[00100011010100000100010010000000010111101011110] w  <  0.333 � 47 
[00011000000001110010001001000100011100010010000] w  <  0.333 � 47 
[00100011101110001100110100010000000010000000011] w  <  0.334 � 47 
[00111011101111111110111101010100011110010010011] w  <  0.667 � 47 
[00010000000000000011000010101000110000001100010] w  <  0.333 � 47 
[01101001010100101000010000010101000010110001100] w  <  0.334 � 47 
[01111001010100101011010010111101110010111101110] w  <  0.667 � 47 
[00000000001001110000010000001110110101000000010] w  <  0.333 � 47 
[00100001000010001011101001000001000010010100000] w  <  0.334 � 47 
[00100001001011111011111001001111110111010100010] w  <  0.667 � 47 
[10111111101111010101111011101101101101111010111] w  <  0.667 � 47 
[00100000000111000000111001001100100001001000010] w  <  0.334 � 47 
[10011111101000010101000010100001001100110010101] w  <  0.333 � 47 

 
Figure 6.  Alternate Representation of (24), (11), and Equations in Figure 5 as (20). 

 
estimates without the forecasts to that made with the forecasts in Figure 1.  There is a large shift, 
making all flows more likely to be exceeded. 

Next, consider the annual maximum daily flow defined over the water year.  Now, for example, 
the first value in Table 1, column 4, for water year 1949 (1 October 1948�30 September 1949) 
corresponds to the objective function of (24) and forecast values of Figure 5 for September 
1948�August 1949 (to make spring snowmelt reflect the effect of the forecast).  This leads to 
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the same equation set as obtained before in Figure 6, yielding the same weights.  These weights 
are now applied to the water year data in column 4 of Table 1 by using (15)�(18) to make the 
distribution fit shown in Figure 2.  The shift to increased exceedance frequency occurs for flows 
greater than 36000 cfs.  Below this flow, there is actually a slight decrease in the exceedance fre-
quency. 

7.  ENSO CONDITIONAL FORECAST EXAMPLE 

As a second set of examples, the El Niño and La Niña conditional probabilities are used to bias 
storm frequency estimates.  First, consider where these conditional probability estimates might 
come from.  [ENSO-type conditioning has been applied elsewhere for statistical downscaling; 
see for example Katz and Parlange (1993, 1996).]  The two phases of the El Niño � Southern Os-
cillation (ENSO) are the El Niño and La Niña events and refer to the oceanic and atmospheric 
circulation in and over the equatorial Pacific.  It is recognized that weather in many parts of the 
world is related to the occurrence of El Niño and La Niña.  The study of historical El Niño and 
La Niña events in Table 6 can yield event probabilities useful in hydrology or other derivative 
outlooks.  A simple technique may be applied to derive probabilistic meteorology forecasts that 
consider the influence of El Niño, La Niña.  That is, probabilities of various meteorological 
events can be estimated from the historical meteorological record conditioned on the occurrence 
of El Niño, La Niña, or the absence of both (Croley 2000a).  Then, given that one of these three 
events is occurring at the time of a forecast, the appropriate set of conditional probabilities can be 
used as a probabilistic meteorological forecast. 

The definition of the occurrence of these events is taken from Shabbar and Khandekar (1996).  
Strong to moderate ENSO years are defined as those in which the 5-month running Southern Os-
cillation Index (mean difference in sea-level pressure between Tahiti and Darwin) remained in 
the lower 25% (El Niño) or upper 25% (La Niña) of the distribution for 5 months or longer.  This 
definition is consistent with that used by Rasmusson (1984), Ropelewski and Jones (1987), and 
Halpert and Ropelewski (1992).  Table 6 contains the years of onset of strong or moderate El 
Niño and La Niña events, as given originally by Shabbar and Khandekar (1996) and corrected 
and extended by Shabbar et al. (1997). 

By inspecting the historical meteorology record for those years of El Niño or La Niña in Table 6, 
one can estimate the probability of any event following an El Niño or La Niña with the event�s 
relative frequency.  For example, in the Great Lakes, there is much interest in the effects of 
ENSO on winter precipitation and air temperatures.  Figure 7 presents selected relative frequen-
cies of precipitation and air temperature over the Lake Erie basin (to be used over the Maumee 
River basin).  Given that an El Niño or La Niña is occurring, the numbers in Figure 7 can be in-
terpreted as forecast probabilities conditioned on the El Niño or La Niña occurrence. 

The La Niña probabilities in Figure 7 are similar to the forecasts of Figure 5; those forecasts are 
predicated on a La Niña occurring.  Therefore the right-most 12 equations in Figure 7 are used, in 
order, with the objective function of (24) to estimate a La Niña influence.  Again, one can con-
struct an equation set similar to (20), as at the top of Figure 8, by inspecting Tables 2�5 for val-
ues in (24), (11), and the right-side 12 equations in Figure 7.  Optimization of the top equation 
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Table 6.  El Niño and La Niña event onset yearsa. 
Year Event Year Event Year Event Year Event 
(1) (2) (3) (4) (5) (6) (7) (8) 

1900  1924 La Niña 1948  1972 El Niño 
1901  1925 El Niño 1949  1973 La Niña 
1902 El Niño 1926 El Niño 1950 La Niña 1974  
1903  1927  1951 El Niño 1975 La Niña 
1904 La Niña 1928 La Niña 1952  1976 El Niño 
1905 El Niño 1929 El Niño 1953 El Niño 1977  
1906  1930 El Niño 1954  1978  
1907  1931  1955 La Niña 1979  
1908  1932  1956 La Niña 1980  
1909 La Niña 1933  1957 El Niño 1981  
1910 La Niña 1934  1958 El Niño 1982 El Niño 
1911 El Niño 1935  1959  1983  
1912 El Niño 1936  1960  1984  
1913  1937  1961  1985  
1914 El Niño 1938 La Niña 1962  1986 El Niño 
1915  1939 El Niño 1963  1987  
1916 La Niña 1940  1964 La Niña 1988 La Niña 
1917 La Niña 1941 El Niño 1965 El Niño 1989  
1918 El Niño 1942  1966  1990  
1919 El Niño 1943  1967  1991 El Niño 
1920  1944  1968  1992  
1921  1945  1969 El Niño 1993  
1922  1946  1970 La Niña 1994  
1923  1947  1971 La Niña   

aAfter Shabbar and Khandekar (1996) and Shabbar et al. (1997). 

set in Figure 8 matches the first 9 La Niña equations in Figure 7 to yield weights for estimating 
the La Niña climate-biased storm frequencies by using (15)�(18).  These are for the annual 
maximum (calendar year) daily flow data in column 3 of Table 1 and for the annual maximum 
daily precipitation intensity data in column 2 of Table 1.  These are shown in Figures 9 and 10, 
respectively, along with the unbiased storm frequency estimates.  (Again, only parametric esti-
mates are shown to simplify the presentation.) 

The El Niño probabilities in Figure 7 appear more significant for air temperature than they do for 
precipitation.  The objective in matching these forecasts is taken (arbitrarily here) as maximizing 
the probability that air temperature over the period November 1999�April 2000 will be in the 
upper third of its historical range (determined from 1961-1990). 

 '99 '00 , 0.667
� �max Nov Apr Nov AprP T �

� �

� ��� �  (27) 

The left-most 12 equations in Figure 7 are used in order with the objective function of (27) to 
estimate an El Niño influence.  Again, one can construct an equation set similar to (20), as at the 
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Maumee River Basin ENSO-Conditional Probability Estimates (as Forecasts) 
SON 1999, DJF 1999, and MAM 2000 Air Temperature (T) & Precipitation (Q) 

(Based on 1948-1995 data and 1961-1990 quantiles) 
 

 Conditional on El Niño Conditional on La Niña 
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Figure 7. ENSO Event Conditional Probability Forecast Equations for Maumee River 
Basin. 

bottom of Figure 8, by inspecting Tables 2�5 for values in (27), (11), and the left-side 12 equa-
tions in Figure 7.  Optimization of the bottom of Figure 8 matches all 12 El Niño equations in 
Figure 7 to yield weights for estimating the El Niño storm frequencies in Figures 9 and 10. 

Figure 9 shows that the effect of considering La Niña conditions, with the objective of maximiz-
ing higher precipitation probability, increases the probability for all flows to be exceeded.  The 
effect of El Niño conditions, with the objective of maximizing higher temperature probability, 
increases the exceedance probability for flows below about 77000 cfs, but decreases it for flows 
above.  In Figure 10, the effects on maximum precipitation intensity are more mixed.  La Niña 
and the maximization of higher precipitation probability increase the exceedance probability for 
precipitation rates above about 3.5 mm/day but decrease it below.  El Niño and the maximization 
of higher temperature probability decrease the exceedance probability for precipitation rates 
above about 2.7 mm/day and only slightly increase it above. 

Even though one can exactly match meteorological forecasts, that does not mean that the result-
ing climate-biased storm frequencies contain no other errors.  Sampling errors still exist and can 
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THE OBJECTIVE OF (24), (11), AND THE RIGHT-MOST 12 EQUATIONS (LA NIÑA) IN FIGURE 7: 

max [11110000001000000011100010100001001001001100100] w  subject to 
 

[11111111111111111111111111111111111111111111111] w  =  47 
[00010000000000000011010010101000110000001100010] w  =  0.111 � 47 
[10000110101011010100001101000010000101000010001] w  =  0.444 � 47 
[01001100100010111000000001101011100000010000001] w  =  0.444 � 47 
[00100011010100000100010010000000010111101011110] w  =  0.444 � 47 
[00000000001001110000010000001110010101000000010] w  =  0.000 � 47 
[11011110110100000100000110110000001000101111101] w  =  0.444 � 47 
[00000001000010110100010000001001101000101001010] w  =  0.222 � 47 
[11010000000100001011000001110100010000000110100] w  =  0.444 � 47 
[01000001000100000100001000000101000100000000000] w  =  0.556 � 47 
[10101110101001110001010011011000010011110110000] w  =  0.111 � 47 
[00000010010101000100001000010000000011110000110] w  =  0.222 � 47 
[00110001101010010001010111000000011100001010000] w  =  0.778 � 47 
 
 
 

THE OBJECTIVE OF (27), (11), AND THE LEFT-MOST 12 EQUATIONS (EL NIÑO) IN FIGURE 7: 

max [11011110110000000110000011010000001010100111001] w  subject to 
 

[11111111111111111111111111111111111111111111111] w  =  47 
[00010000000000000011010010101000110000001100010] w  =  0.364 � 47 
[10000110101011010100001101000010000101000010001] w  =  0.273 � 47 
[01001100100010111000000001101011100000010000001] w  =  0.273 � 47 
[00100011010100000100010010000000010111101011110] w  =  0.273 � 47 
[00000000001001110000010000001110010101000000010] w  =  0.273 � 47 
[11011110110100000100000110110000001000101111101] w  =  0.636 � 47 
[00000001000010110100010000001001101000101001010] w  =  0.636 � 47 
[11010000000100001011000001110100010000000110100] w  =  0.273 � 47 
[01000001000100000100001000000101000100000000000] w  =  0.091 � 47 
[10101110101001110001010011011000010011110110000] w  =  0.364 � 47 
[00000010010101000100001000010000000011110000110] w  =  0.273 � 47 
[00110001101010010001010111000000011100001010000] w  =  0.364 � 47 
 

Figure 8.  Alternate Equations Sets for La Niña and El Niño Examples as in (20). 
 

be pronounced if many meteorological time series segments are weighted by zero and effectively 
eliminated from the sample.  This happened in the ENSO conditioned examples.  Only 11 La 
Niña example weights were non-zero (out of 47) and only 19 El Niño weights were non-zero. 
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Figure 9.  ENSO Annual Maximum (Calendar Year) Daily Maumee River Flow Exceedance. 
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Figure 10  ENSO Annual Maximum Daily Maumee River Basin Precipitation Exceedance. 
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8.  MULTIPLE SOLUTIONS 

In the optimization of (20), all expressions are linear, including the objective function [first line 
in (20)].  This allows a linear programming optimization technique to be used as compared to 
earlier formulations (Croley 1996, 1997b).  Those used the minimization of the sum of squared 
differences of each weight with unity, � �

21iw �� , and employed classical differential calcu-
lus solutions for zero slope of the Lagrangian.  The linear formulation proves superior in its abil-
ity to include alternate objectives (expressed as maximization of selected event probabilities).  
Also, the formulation of (20) allows non-negativity constraints on the weights to be explicitly in-
cluded.  This means that all solutions can be searched.  The earlier formulations of Croley (1996, 
1997b) lacked explicit inclusion of non-negativity constraints for the weights.  There, optimum 
solutions were considered and discarded (along with lowest-priority constraints) if non-negativity 
constraints were unsatisfied.  But that also discarded the many other possibilities that, while not 
optimum, might satisfy all constraints. 

There is a trade-off however.  Multiple optima solutions are now a possibility that did not exist 
before.  In the search algorithms employed in the linear programming solutions, these multiple 
optima can be detected (that is, the existence of more than a single optimum can be discerned) 
but the systematic exploration of them can be extensive.  Croley (2000a,b) describes this further.  
Here, it is sufficient to note that, in the examples of Figures 1 and 2, the optimum was unique.  In 
the examples of Figures 9 and 10, the optima were not unique.  The optimization for the La Niña 
examples yielded 8 solution points in the systematic search with the Simplex method.  Four of 
these were unique but discovered twice.  The optimization for the El Niño examples yielded over 
5000 solution points (the limit on the search); 36 were unique.  In both of these cases, the aver-
age of the found unique optima were used for weighting (biasing) the sample in estimating storm 
frequencies. 

9.  SUMMARY AND OBSERVATIONS 

The methodology described herein allows one to recognize changing climate in the estimation of 
storm frequencies, removing one of the worst assumptions associated with this, which is that fu-
ture probabilities are the same as the past.  Existing forecasts of meteorology probabilities can be 
used to bias storm frequency estimates for a changing climate.  The methodology is adapted from 
earlier work that uses forecasts of meteorology probabilities to derive forecasts of consequent 
hydrology probabilities in an operational hydrology approach.  The linear objective function used 
here enables incorporation of an event probability into the objective, use of existing optimization 
techniques, and direct inclusion of non-negativity constraints. 

The examples presented here are provided to supplement and further illustrate the methodology 
described elsewhere (Croley 2000a,b).  These examples may be more representative of storm fre-
quency estimation in an operational setting rather than in a design setting.  Climate-biased storm 
frequencies were estimated by preserving meteorology forecasts.  These conditions are current 
and are not generally regarded as applying over a very long time into the future.  The resulting 
biased storm frequencies can only be considered applicable over the same time period as the me-
teorology forecasts or other event probabilities used to condition them.  The examples given here 



 26 

applied over the next several months, appropriate for use in an operational setting.  If probabili-
ties can be defined (estimated) corresponding to climate shifts expected from the present for-
ward, then the resulting biased storm frequencies could be used in a design setting. 

Complete software, in the form of an easy-to-use interactive Windows� graphical user interface, 
and worked examples are available free of charge over the World Wide Web.  The software, ex-
amples, and tutorial materials may be acquired in a self-installing file by visiting the web site en-
titled: http://www.glerl.noaa.gov/wr/OutlookWeights.html and downloading. 
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